首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   20篇
  2023年   2篇
  2022年   2篇
  2021年   17篇
  2020年   11篇
  2019年   5篇
  2018年   11篇
  2017年   9篇
  2016年   8篇
  2015年   13篇
  2014年   11篇
  2013年   15篇
  2012年   32篇
  2011年   18篇
  2010年   12篇
  2009年   8篇
  2008年   15篇
  2007年   18篇
  2006年   11篇
  2005年   11篇
  2004年   12篇
  2003年   3篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1996年   2篇
  1995年   2篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1967年   1篇
  1966年   3篇
  1965年   1篇
排序方式: 共有303条查询结果,搜索用时 65 毫秒
41.
42.
43.
Distribution of thymine in protein coding mRNA sequences has been studied here. Our study suggest that thymine in protein coding sequences are not randomly distributed but with probability. Frame1 prefers to have definite amount of thymine. It is observed that the thymine content of frame 4 is also involved in protein coding. Frame 3 prefers to have least amount of thymine. However, frame 2 and frame 6 shows a variable degree of thymine content. The mRNA sequences of heterosexual animals, particularly, the human show a different distribution profile (less thymine in frame 1) compared to that of yeast and plants.  相似文献   
44.
Toxoplasma gondii is a eukaryotic parasite of the phylum Apicomplexa that is able to infect a wide variety of host cells. During its active invasion process it secretes proteins from discrete secretory organelles: the micronemes, rhoptries and dense granules. Although a number of rhoptry proteins have been shown to be involved in important interactions with the host cell, very little is known about the mechanism of secretion of any Toxoplasma protein into the host cell. We used a chemical inhibitor of phospholipase A2s, 4-bromophenacyl bromide (4-BPB), to look at the role of such lipases in the secretion of Toxoplasma proteins. We found that 4-BPB was a potent inhibitor of rhoptry secretion in Toxoplasma invasion. This drug specifically blocked rhoptry secretion but not microneme secretion, thus effectively showing that the two processes can be de-coupled. It affected parasite motility and invasion, but not attachment or egress. Using propargyl- or azido-derivatives of the drug (so-called click chemistry derivatives) and a series of 4-BPB-resistant mutants, we found that the drug has a very large number of target proteins in the parasite that are involved in at least two key steps: invasion and intracellular growth. This potent compound, the modified “click-chemistry” forms of it, and the resistant mutants should serve as useful tools to further study the processes of Toxoplasma early invasion, in general, and rhoptry secretion, in particular.  相似文献   
45.
46.
Aims: To compare effective cell disruption methods for lipid extraction from fresh water microalgae. Methods and Results: Chlorella sp., Nostoc sp. and Tolypothrix sp. were isolated from fresh water ponds in and around Gandhigram, Dindigul District, Tamilnadu, India, and used for lipid extraction. Different methods, including autoclaving, bead beating, microwave, sonication and a 10% NaCl solution treatments, were tested to identify the most effective cell disruption method. The total lipids from three microalgal species were extracted using a mixture of chloroform and methanol. Fatty acid composition was detected by gas chromatography (GC). Nostoc sp. and Tolypothrix sp. showed higher oleic acid content of 13·27 mg g?1 dw and 17·75 mg g?1 dw, respectively, whereas Chlorella sp. had high linoleic acid content of 17·61 mg g?1 dw when the cells were disrupted using the sonication method. Conclusions: Finally, the sonication method was found to be the most applicable and efficient method of lipid extraction from microalgae. The highest lipid content was extracted from Chlorella sp. Significance and Impact of the Study: In biodiesel production from microalgae, lipid extraction is a crucial step and important as cell disruption comes in this step. Therefore, the appropriate cell disruption method and device is a key to increase the lipid extraction efficiency.  相似文献   
47.
48.
An appropriate ratio of interleukin 1 beta to interleukin 1 receptor antagonist (IL1Ra) is required for successful pregnancy. Our objective was to study the genetic association between IL1RN variable numbers of tandem repeat (VNTR) polymorphism and recurrent pregnancy loss (RPL). To analyze the association between IL1RN VNTR allele and RPL, we investigated the IL1RN VNTR polymorphism in 136 RPL patients and in 200 healthy control women. Meta-analysis on this polymorphism was conducted to support our findings. PCR based approach was used to analyze IL1RN VNTR polymorphism and it was further confirmed by sequencing. Systematic review and meta-analysis was done using electronic database (Pub-Med, Google Scholar and Ovid) up to February 27, 2013. This meta-analysis was assessed by comprehensive meta-analysis software version 2. For meta-analysis 549 cases and 1,450 controls were included. The frequency of IL1RN genotype 2/2 was significantly higher in RPL compared to control group (AORs 3.10, 95 % CI 1.58–6.11, p = 0.001). The presence of rare allele also increased the risk of RPL significantly (ORs 1.63, 95 % CI 1.16–2.29, p = 0.004). The meta-analysis stratified by ethnicity showed that individuals with allele 2 had increased risk of RPL (OR 1.29, 95 % CI 1.04–1.61, p = 0.01), in Asians population by using fixed model. However the data of the present study clearly suggests that IL1RN VNTR polymorphism is a genetic risk factor for pregnancy loss in the study population.  相似文献   
49.
Tetrahydrolipstatin (THL) is bactericidal but its precise target spectrum is poorly characterized. Here, we used a THL analog and activity-based protein profiling to identify target proteins after enrichment from whole cell lysates of Mycobacterium bovis Bacillus Calmette-Guérin cultured under replicating and non-replicating conditions. THL targets α/β-hydrolases, including many lipid esterases (LipD, G, H, I, M, N, O, V, W, and TesA). Target protein concentrations and total esterase activity correlated inversely with cellular triacylglycerol upon entry into and exit from non-replicating conditions. Cellular overexpression of lipH and tesA led to decreased THL susceptibility thus providing functional validation. Our results define the target spectrum of THL in a biological species with particularly diverse lipid metabolic pathways. We furthermore derive a conceptual approach that demonstrates the use of such THL probes for the characterization of substrate recognition by lipases and related enzymes.Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is responsible for nearly 2 million deaths each year. The host immune response toward aerosol infection is to quarantine tubercle bacilli in a granulomatous structure (1, 2). However, granuloma-associated mycobacteria can switch to a non-replicative, “dormant” state and successfully evade immune response for decades after infection (3, 4). The metabolic events that permit tubercle bacilli to enter host cells and revive from states of persistence suggest that lipids are utilized as a carbon source (57). During times of oxygen deprivation and in the absence of host cells, cultivated mycobacteria store fatty acids (FAs) in the form of triacylglycerol (TAG)1-enriched lipid droplets (810). Upon resuscitation (by the re-introduction of oxygen), these lipid droplets vanish and TAGs are hydrolyzed (11). Unfortunately, the molecular mechanisms for TAG build-up and breakdown are far less well understood in bacteria when compared with those processes in eukaryotes.Comparative sequence analysis of the Mtb genome has revealed that it contains 250 genes encoding enzymes involved in lipid metabolism compared with only 50 enzymes in Escherichia coli, which has a genome of comparable size. Among these genes, 150 are predicted to encode proteins involved in lipid catabolism (12, 13). A family of 24 carboxyl ester hydrolases called “lip” genes (lipC to Z, except K and S) has been predicted to play a role in lipid catabolism (14). Among these, only a few have been functionally characterized and related to mycobacterial dormancy and resuscitation (1518).Tetrahydrolipstatin, a serine esterase inhibitor, covalently binds to and inhibits mammalian lipases and fatty acid synthase (FAS) and is marketed as “Orlistat” for the treatment of severe forms of obesity (19). THL was previously shown to inhibit both active and latent forms of mycobacteria (11, 2022) but the bacterial target spectrum remains poorly characterized. Therefore, to (1) define the THL target spectrum in a mycobacterial species and (2) to obtain biochemical insights into regulation of lipases and esterases in different metabolic states, we employed a chemical-proteomics approach using activity-based protein profiling (ABPP) with a bait that has been described to bind to lipolytic enzymes (2325). We identified several known lipases (as anticipated), putative lipase and esterases, and hypothetical proteins of unknown functions, thereby providing a comprehensive resource of experimentally determined THL targets in mycobacteria. Importantly, we systematically compared readouts of fluorescently tagged THL-proteins (7 bands on one-dimensional SDS-PAGE) with those of mass spectrometry-based peptide identification of enriched protein fractions (247 in growing cells). This comparison led to the identification of 14 THL targets, two of which were further validated experimentally. We furthermore provide a conceptual framework for the evaluation of this target list using both experimental as well as bioinformatics approaches in two examples, lipH and tesA. Overall, our data indicate that THL is an anti-mycobacterial drug because of its potential to (1) bind to a relatively wide range of lipolytic enzymes and (2) prevent bacilli from resuscitating from a nonreplicating persistent (NRP) state when lipid metabolism is particularly important.  相似文献   
50.
Engineered nanoparticles that can facilitate drug formulation and passively target tumours have been under extensive research in recent years. These successes have driven a new wave of significant innovation in the generation of advanced particles. The fate and transport of diagnostic nanoparticles would significantly depend on nonselective drug delivery, and hence the use of high drug dosage is implemented. In this perspective, nanocarrier-based drug targeting strategies can be used which improve the selective delivery of drugs to the site of action, i.e. drug targeting. Pharmaceutical industries majorly focus on reducing the toxicity and side effects of drugs but only recently it has been realised that carrier systems themselves may pose risks to the patient. Proteins are compatible with biological systems and they are biodegradable. They offer a multitude of moieties for modifications to tailor drug binding, imaging or targeting entities. Thus, protein nanoparticles provide outstanding contributions as a carrier for drug delivery systems. This review summarises recent progress in particle-based therapeutic delivery and discusses important concepts in particle design and biological barriers for developing the next generation of particles drug delivery systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号